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SOLUTION TO PROBLEM SET 7
Solutions to Purcell problems by P. Pebler

1 Purcell 4.8 A copper wire 1 km long is connected across a 6 volt battery. The resistivity
of copper is 1.7 × 10−6 ohmcm, and the number of conduction electrons per cubic centimeter is
8 × 1022. What is the drift velocity of the conduction electrons under these circumstances? How
long does it take an electron to drift once around the circuit?

The current will be

I =
V

R
=

V A

ρL

and the current density

J =
I

A
=

V

ρL
.

The current density is the charge density times the drift speed and the charge density is ne where
n is the number density of electrons.

v =
J

ne
=

V

ρLne

v =
6 V

(1.7× 10−6 ohmcm)(105 cm)(8× 1022 cm−3)(1.6× 10−19 C)
= 2.8× 10−3 cm/s

t =
105 cm

2.8× 10−3 cm/s
= 3.6× 107 s � 1 year

2 Purcell 4.20 A black box with three terminals a, b, and c contains nothing by three resistors
and connecting wire. Measuring the resistance between pairs of terminals, we find Rab = 30 ohm,
Rac = 60 ohm, and Rbc = 70 ohm. Show that the contents cound be either of the following.

Is there any other possibility? Are the two boxes completely equivalent, or is there an external
measurement that would distinguish between them?

For the first box, the resistance between any two terminals involves two of the resistors in series
with the third resistor extraneous. For example, Rab = 10 ohm+ 20 ohm = 30 ohm.

For the second box, the resistance between any two terminals involves one resistor in parallel
with the other two in series. For example,

Rab =
(

1
34 ohm

+
1

85 ohm+ 170 ohm

)−1

= 30 ohm.
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The other two are easily verified.
These are the only two ways to make these three resistances with only three resistors.
For the two arrangements to be electrically identical, they must both draw the same currents

given the same input voltages Va, Vb, and Vc. The details are somewhat messy. I’ll leave it to you
to verify that given the input voltages Va, Vb, and Vc, both arrangements draw the currents

Ia =
1

170
(7Va − 5Vb − 2Vc),

Ib =
1
170

(6Vb − Vc − 5Va),

Ic =
1
170

(3Vc − Vb − 2Va).

Note that Ia + Ib + Ic = 0 as it must.

3 Purcell 4.25 A charged capacitor C discharges through a resistor R. Show that the total energy
dissipated in the resistor agrees with the energy originally stored in the capacitor. Suppose someone
objects that the capacitor is never really discharged because Q only becomes zero for t = ∞. How
would you counter this objection?

Assume that the capacitor initially has charge Q on it. The current as a function of time is

i(t) = ioe
−t/τ

where τ = RC and io = Vo/R = Q/CR. The power dissipated in a resistor is P = i2R, so the total
energy dissipated is

E =
∫ ∞

0
P dt =

∫ ∞

0
R i2o exp (−2t/τ) dt = R i2o

τ

2
= R

Q2

C2R2

RC

2
=

1
2C

Q2.

This was the initial energy stored in the capacitor.
We can find the time it takes for the charge left on the capacitor to be one electron. The charge

as a function of time is

q = Q exp (−t/τ).

The time would be

t = τ ln
Q

e
.

Because of the ln, even for macroscopic initial charges, the time wouldn’t be that large.
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4 Purcell 4.26 Two graphite rods are of equal length. One is a cylinder of radius a. The other is
conical, tapering linearly from radius a at one end to radius b at the other. Show that the end-to-end
resistance of the conical rod is a/b times that of the cylindrical rod.

We consider the conical rod to be the series combination of little cylindrical rods of length dx.
The radii of these little cylinders are

r(x) = a+
b− a

L
x.

We sum up the little resistances.

R =
∫

dR =
∫ L

0
ρ
dx

A
= ρ

∫ L

0

dx

π(a+ (b− a)x/L)2
= ρ

L

πab
=

a

b

(
ρ

L

πa2

)

ρL/πa2 is the resistance of the cylinder of radius a.

5 Purcell 4.30 Consider two electrodes 2 mm apart in vacuum connected by a short wire. An alpha
particle of charge 2e is emmitted by the left plate and travels directly towards the right plate with
constant speed 108 cm/s and stops in this plate. Make a quantitative graph of the current in the
connecting wire, plotting current against time. Do the same for an alpha particle that crosses the
gap moving with the same speed but at an angle of 45o. Suppose we had a cylindrical arrangement
of electrodes. Would the current pulse have the same shape?

The result of problem 3.24 tells us the induced charge on the electrodes for any given position
of the alpha particle. The current is just the time derivative of this charge.

q1 = −2e
(
s− b

s

)

I =
dq1

dt
=

2e
s

db

dt
=

2ev
s

= 0.48 esu/s

This pulse lasts for (0.2 cm)/(108 cm/s) = 2 ns. If the alpha particle travels at 45o, the normal
speed and the current just decrease by

√
2.

For concentric cylinders, the current pulse would have a different shape. If you work out the
details,

I ∝ 1
a+ vt

during the time that the alpha particle is in motion.
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6 Purcell 4.31 Suppose a cube has a resistor of resistance Ro along each edge. At each corner the
leads from three resistors are soldered together. Find the equivalent resistance between two nodes
that represent diagonally opposite corners of the cube. Now find the equivalent resistance between
two nodes that correspond to diagonally opposite corners of one face of the cube.

A total current I enters one node. It then has a choice of three directions to go. Because of the
symmetry, each choice is identical to the others so the current must split up evenly so that I/3 goes
through each resistor. Likewise, the current reaching the other node comes through three resistors
each having current I/3. This leaves 6 resistors in the middle to share the current. Because each
one is identical due to the symmetry, they must each have current I/6. To find the voltage drop
between the two nodes, follow a straight path from one to the other.

V =
I

3
Ro +

I

6
Ro +

I

3
Ro =

5
6
RI

Req =
5
6
Ro

In the second situation, because of the symmetry, we notice that all the resistors on the top
square carry the same magnitude of current while all the resistors on the bottom square carry the
same magnitude also. This tells us that there is no current through the two resistors indicated
by arrows. We can therefore ignore them, because the circuit would behave the same without
them. It is then easy to combine the remaining resistors. The top and bottom squares are parallel
combinations of resistors 2Ro.

R =
(

1
2Ro

+
1

2Ro

)−1

= Ro

This leaves us with one resistor Ro in parallel with three resistors Ro.

Req =
(

1
Ro

+
1

3Ro

)−1

=
3
4
Ro
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7 Purcell 4.32 Find the input resistance (between terminals A and B) of the following infinite
series.

Show that, if voltage Vo is applied at the input to such a chain, the voltage at successive nodes
decreases in a geometric series. What ratio is required for the resistors to make the ladder an
attenuator that halves the voltage at every step? Can you suggest a way to terminate the ladder
after a few sections without introducing any error in its attenuation?

If we put another “link” on the left of this infinite chain, we get exactly the same configuration.
If this infinite chain has equivalent resistance Req, the new chain with the extra link can be described
by the middle circuit. We can calculate the equivalent resistance of this circuit by considering Req

and R2 in parallel, in series with R1. But since this circuit is the same as the original, this equivalent
resistance is again Req.

Req = R1 +

(
1
R2

+
1

Req

)−1

This leads to the equation

R2
eq −R1Req −R1R2 = 0,

with positive solution

Req =
R1 +

√
R2

1 + 4R1R2

2
.

Now consider an arbitrary link with voltage difference Vi between top and bottom. To find the
voltage Vi+1, we can replace the rest of the series with the equivalent resistor. We could get Vi+1 if
we knew the current through R1. For this purpose we can replace the ith link also with Req. The
current through this equivalent circuit will also be the current through R1. This current is just
Vi/Req.

Vi+1 = Vi −R1
Vi

Req
= Vi

Req −R1

Req

If we wish to halve the voltage each step,

R1

Req
=

1
2
,

4R1 = R1 +
√

R2
1 + 4R1R2,
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R2 = 2R1.

If we wish to terminate the ladder without changing this property, we just replace the rest of the
chain at any point with a resistor with resistance Req.

8 Taylor & Wheeler 19 (a.) Two events P and Q have a spacelike separation. Show that an
inertial frame can be found in which the two events occur at the same time. In this frame, find the
distance between the two events (this is called the proper distance). (Hint: one method of proof
is to assume that such an inertial frame exists and then use the Lorentz transformation equations
to show that the velocity βc of this inertial frame, relative to the frame in which the events were
initially described, is such that β < 1, thus justifying the assumption made.) (b.) Two events P
and R have a timelike separation. Show that an inertial frame can be found in which the two events
occur at the same place. In this frame, find the time interval between the two events (this is called
the proper time).

Denote the frame in which P and Q were initially described by S, and the frame in which we
wish them to be simultaneous by S ′. As usual, the origins of these frames coincide at t = t′ = 0.
In S, if P and Q have a spacelike separation, their spatial separation must be nonzero. Orient the
x and x′ axes along the direction of this separation, so that yQ = yP and zQ = zP but xQ �= xP .
Applying the Lorentz transformation between S ′ and S,

ct′P = γctP − γβxP

ct′Q = γctQ − γβxQ

ct′Q − ct′P = γ(ctQ − ctP )− γβ(xQ − xP )

We wish the left-hand side to be zero. If it is, then

γ(ctQ − ctP ) = γβ(xQ − xP )

(ctQ − ctP )
(xQ − xP )

= β

Now, we are told that the separation between events Q and P is spacelike:

c2(tQ − tP )2 − (xQ − xP )2 < 0

This guarantees that |β| < 1. It is straightforward to calculate the spatial separation of the two
events in S ′ by using the inverse Lorentz transformation:

xP = γx′
P + γβct′P

xQ = γx′
Q + γβct′Q

xQ − xP = γ(x′
Q − x′

P ) + γβ(ct′Q − ct′P )

We have chosen β so that the two events are simultaneous in S ′; this forces the last term to vanish.
Substituting the value that we found for β,

xQ − xP = γ(x′
Q − x′

P )
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x′
Q − x′

P =
√
1− β2 (xQ − xP )

x′
Q − x′

P =

√
1−

(ctQ − ctP
xQ − xP

)2
(xQ − xP )

x′
Q − x′

P = ±
√
(xQ − xP )2 − (ctQ − ctP )2

where the sign is chosen so that x′
Q − x′

P has the same sign as xQ − xP . This proper distance is
the smallest distance between the two events that can be reached in any reference frame.

Similarly, when the separation between events P and R is timelike,

x′
R − x′

P = γ(xR − xP )− γβ(ctR − ctP )

γ(xR − xP ) = γβ(ctR − ctP )

(xR − xP )
(ctR − ctP )

= β

ctR − ctP = γ(ct′R − ct′P ) + γβ(x′
R − x′

P )

ct′R − ct′P =
√
1− β2 (ctR − ctP )

ct′R − ct′P =

√
1−

( xR − xP

ctR − ctP

)2
(ctR − ctP )

ct′R − ct′P = ±
√
(ctR − ctP )2 − (xR − xP )2

where the sign is chosen so that ct′R − ct′P has the same sign as ctR − ctP . This proper time is the
smallest time interval between the two events that can be reached in any reference frame.
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